Abstract

Acute toxicity determination is essential in the ecological risk assessment. Traditionally, acute toxicity testing requires substantial numbers of animals and uses death as an apical end point which requires large number of experimental animals and takes days to obtain the results. Application of fish cell lines can provide a possible alternative to traditional acute toxicity test. However, cell-based assay may show several orders of magnitude less sensitive than the animal-based results. Some changes in cellular organelles could have the sensitivity in responding to pollutants. For this reason, a cell-based fluorescent assay was developed using rabbitfish fin cells as model and fluorescent probes to visualize the subcellular responses. The subcellular responses under sewage effluents exposure were captured by confocal microscopy. These cellular responses were quantified and several subcellular indexes represented the toxicity. The optimized assay was then used to determine the toxicity of sewage effluents displaying toxicity to aquatic animals. Through visualization of cellular responses, we further screened several cellular indexes including lysosomal number and mitochondrial size which had a good linear relationship with sewage effluents content. Besides, these cellular indexes had a good agreement between in vivo and in vitro results, demonstrating the accuracy of cellular parameters in representing the acute toxicity of sewage effluents. The developed cell-based testing assay presented here has the characteristics of a faster and cheaper method, which does not require complex facilities and large amount of testing samples. The developed assay may be further applied in predicting the acute toxicity to sewage effluents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call