Abstract
This paper describes a highly practical blind signal separation (BSS) scheme operating on subband domain data to blindly segregate convolutive mixtures of speech. The proposed method relies on spatiotemporal separation carried out in the time domain by using a multichannel blind deconvolution (MBD) algorithm that enforces separation by entropy maximization through the popular natural gradient algorithm (NGA). Numerical experiments with binaural impulse responses affirm the validity and illustrate the practical appeal of the presented technique even for difficult speech separation setups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.