Abstract

We propose a novel picture of high-harmonic generation (HHG) in solids based on the concept of temporally changing band structures. To demonstrate the utility of this picture, we focus on the high-order sideband generation (HSG) caused by strong terahertz (THz) and weak near-infrared (NIR) light in the context of pump-probe spectroscopy. We find that the NIR frequency dependence of the HSG indicates the existence of new energy levels (sub-bands) around the band-gap energy, which have multiple frequencies of THz light. This sub-band picture explains why the HSG intensity becomes a non-monotonic function of the THz light amplitude. The present analysis not only reveals the origin of the plateau structure in HHG spectra, but also provides a connection to other high-field phenomena.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.