Abstract
To examine the dependency of Taxol-radiation interactions on the scheduling of the two agents. The human laryngeal squamous cell carcinoma line SCC20 was used for this study. Cells were irradiated as subconfluent cultures using Cs-137 gamma rays at a dose rate of 1.75 Gy/min. Cultures were pretreated with Taxol (7.5 nM for 12 h, S.F. = 0.4) and then irradiated with graded doses followed by either immediate plating or holding for 6 h either in the absence or presence of 7.5 nM Taxol prior to plating for colony-forming ability. Experiments in which cells were irradiated and then exposed to 7.5 nM Taxol for both 12 and 18 h were also performed. Parallel-flow cytometric analyses of cell-cycle distribution of the various treated populations were carried out. The results indicate that pretreatment with Taxol induced a G2 block which was maintained during 6 h postirradiation holding either in the presence or absence of Taxol. No modification of radiosensitivity in the low-dose region was seen for cells treated with Taxol, irradiated, and plated immediately, with the resulting survival being compatible with an additive effect. However, for Taxol-pretreated cells held for 6 h postirradiation, either in the absence or presence of Taxol, the resulting survival reproducibly demonstrated a marked less than additive effect. This was particularly prominent for cells held in the presence of Taxol. Subsequent experiments in which Taxol was added to cells immediately postirradiation again demonstrated a less than additive effect of the two modalities. The results of this study are consistent with a dual mechanism of action involving Taxol-induced radiation resistance, possibly as a consequence of postirradiation holding in G2, and radiation-induced Taxol resistance through an as-yet-undefined mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Radiation Oncology, Biology, Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.