Abstract
The dynamic properties of steady-state microtubules in the presence of the antitumor drug taxol and GTP, but in the absence of microtubule-associated proteins have been studied. The molecular rate constants for the loss or gain of subunits at steady state was found to be dramatically decreased as compared with that for microtubules formed in the presence of GTP and microtubule-associated proteins but in the absence of taxol [Zeeberg, B., Reid, R., and Caplow, M. (1980) J. Biol. Chem. 255, 9891-9899]. In light of this change it was surprising to find that the degrees of directionality for subunit flux into the microtubule at steady state are nearly identical within 1.5% of each other) in the two systems. One mechanism to account for this would be for taxol to cause a nearly identical decrease in the rate constants for subunit dissociation at both ends of the microtubule, with no effect on the rate constants for subunit addition. Similar results have previously been found in studies with an endogenous effector of the microtubule steady state, a protein kinase [Jameson, J. L. and Caplow, M. (1981) Proc. Natl Acad. Sci. USA, 78, 3413-3417]. In this case it was found that phosphorylation of microtubule-associated proteins altered the molecular rate constants for tubulin subunit addition and dissociation, but had no effect on the degree of directionality for subunit flux. It will be of interest to determine whether other exogenous or endogenous effectors also act in a manner such as to leave the directionality unaltered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.