Abstract
The author reviews methods for generating sub-Poissonian light and related concepts. This light has energy fluctuations reduced below the level which corresponds to a classical Poissonian process (shot-noise level). After an introduction to the concept of nonclassical light, an overview is given of the main methods of quantum-noise reduction. Sub-Poissonian processes are exemplified in different areas of optics, ranging from single-atom resonance fluorescence to nonlinear optics, laser physics, and cavity quantum electrodynamics. Emphasis is placed on the conceptual foundations, and on developments in laser theory that lead to the possibility, already demonstrated experimentally, of linewidth narrowing and sub-Poissonian light generation in lasers and masers. The sources of quantum noise in these devices are analyzed, and four noise-suppression methods are discussed in detail: regularization of the pumping, suppression of spontaneous-emission noise, nonadiabatic evolution of the atomic variables, and twin-beam generation.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have