Abstract

In this article we detail the use of machine learning for spatio-temporally dynamic turbulence model classification and hybridization for large eddy simulations (LES) of turbulence. Our predictive framework is devised around the determination of local conditional probabilities for turbulence models that have varying underlying hypotheses. As a first deployment of this learning, we classify a point on our computational grid as that which requires the functional hypothesis, the structural hypothesis or no modelling at all. This ensures that the appropriate model is specified froma prioriknowledge and an efficient balance of model characteristics is obtained in a particular flow computation. In addition, we also utilize the conditional-probability predictions of the same machine learning to blend turbulence models for another hybrid closure. Our test case for the demonstration of this concept is given by Kraichnan turbulence, which exhibits a strong interplay of enstrophy and energy cascades in the wavenumber domain. Our results indicate that the proposed methods lead to robust and stable closure and may potentially be used to combine the strengths of various models for complex flow phenomena prediction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call