Abstract

We report the first thorough investigation of the Lamb-dip effect in the THz region, which in turn allows sub-Doppler resolution to be exploited in this frequency region. It is demonstrated that an accuracy of 1 kHz, or even better (i.e., an accuracy better than 1 part in 10(9)), and a frequency resolution of 50 kHz (i.e., a resolution better than 5 parts in 10(8)) can be routinely obtained in our laboratory. It has also shown that Lamb-dip spectra can be recorded using either a Fabry-Perot interferometric cell or a free-space cell. Hydrogen sulfide (H2S), sulfur dioxide (SO2), deuterated water (D2O), and methyl fluoride (CH3F) have been selected as examples for demonstrating the accuracy and resolution reachable, thus providing the most accurate frequency values in the 1.0-1.2 THz frequency range for these molecules. Measurements for SO2 have also been employed in a global fit, thus improving its spectroscopic parameters for the vibrational ground state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call