Abstract

We investigate the dynamics of quantum entanglement after a global quench and uncover a qualitative difference between the behavior of the von Neumann entropy and higher Rényi entropies. We argue that the latter generically grow sub-ballistically, as ∝sqrt[t], in systems with diffusive transport. We provide strong evidence for this in both a U(1) symmetric random circuit model and in a paradigmatic nonintegrable spin chain, where energy is the sole conserved quantity. We interpret our results as a consequence of local quantum fluctuations in conserved densities, whose behavior is controlled by diffusion, and use the random circuit model to derive an effective description. We also discuss the late-time behavior of the second Rényi entropy and show that it exhibits hydrodynamic tails with three distinct power laws occurring for different classes of initial states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call