Abstract

Nanopantography, a massively parallel nanopatterning method over large areas, was previously shown to be capable of printing 10 nm features in silicon, using an array of 1000 nm-diameter electrostatic lenses, fabricated on the substrate, to focus beamlets of a broad area ion beam on selected regions of the substrate. In the present study, using lens dimensional scaling optimized by computer simulation, and reduction in the ion beam image size and energy dispersion, the resolution of nanopantography was dramatically improved, allowing features as small as 3 nm to be etched into Si.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call