Abstract

We present the application of the SU($N$) ($N>2$) spin-wave theory to spin-orbital Mott insulators whose ground states exhibit magnetic orders. When taking both the spin and orbital degrees of freedom into account rather than projecting onto the Kramers doublet, the lowest spin-orbital locking energy levels, due to the inevitable spin-orbital multipole exchange interactions, the SU($N$) spin-wave theory should take the place of the SU($2$) one. To implement the application, we introduce an efficient general local mean field approach which involves all the local fluctuations into the SU($N$) linear spin-wave theory. Our approach is tested firstly by calculating the multipolar spin-wave spectra of the SU($4$) antiferromagnetic model. Then we apply it to spin-orbital Mott insulators. It is revealed that the Hund's coupling would influence the effectiveness of the isospin-$1/2$ representation when the spin orbital coupling is not large enough. Besides, we also calculate the spin-wave spectra based on the first principle calculations for two concrete materials, $\alpha$-RuCl$_3$ and Sr$_2$IrO$_4$. The SU($N$) spin-wave theory appropriately depicts the low-energy magnons and the spin-orbital excitations qualitatively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.