Abstract
Purpose: To use Gafchromic EBT3 film to quantify key dosimetric characteristics of the Vidar DosimetryPro Advantage RED film scanner for use in SBRT/SRS QA, by analyzing scanner uniformity and dose sensitivity. Method: Gafchromic EBT3 film was used in this study. Films were irradiated using 6MV FFF and 10MV FFF beams from a Varian Edge linear accelerator, with setup of 100cm SAD at depth 5 cm. Nine doses were delivered per film, with calibration dose ranges of 1–10 Gy and 3–24 Gy for 6MV FFF, and 3–27 Gy for 10MV FFF. Films were scanned with the long side of the film parallel to the detector array. Dose calibration curves were fitted to a 3rd degree polynomial. The derivative of a calibration curve was taken to determine the scanner's sensitivity per dose delivered (OD/Gy). Scanner non-uniformity was calculated in 2 dimensions by taking the mean of standard deviation in each row and column. Absolute dose SRS/SBRT Gamma analyses were performed with passing criteria of 3% and 1mm DTA. For comparison, Gamma analyses were also performed using an Epson Expression 10000 XL. Results: Uniformity for the Vidar scanner was 0.37% +/− 0.03% in the perpendicular to scan direction and 0.67% +/− 0.05% in the parallel to scan direction, with an overall uniformity of 0.52% +/− 0.03%. Epson red channel uniformity was 0.85% +/− 0.05% and 0.88% +/− 0.08% for the green channel. The Vidar average dose sensitivity from 1–10 Gy was 0.112 OD/Gy and 0.061 OD/Gy for 3–24 Gy. SBRT/SRS Gamma pass rates were 97.8 +/− 1.4 for Vidar and 97.5 +/− 1.4 for Epson. Conclusion: The Vidar scanner has 41% less non-uniformity compared to Epson XL10000 green channel. The dose sensitivity is 2–3 time greater for the Vidar scanner compared to the Epson in the SRS/SBRT dose range of 5–24 Gy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.