Abstract

Purpose:The statistical models (SM) are typically used as a subjective description of a population for which there is only limited sample data, and especially in cases where the relationship between variables is known. The normal tissue complications and tumor control are frequently stochastic effects in the Radiotherapy (RT). Based on probabilistic treatments, it recently has been formulated new NTCP and TCP models for the RT. Investigating the particular requirements for their clinical use in the proton therapy (PT) is the goal of this work.Methods:The SM can be used as phenomenological or mechanistic models. The former way allows fitting real data and getting theirparameters. In the latter one, we should do efforts for determining the parameters through the acceptable estimations, measurements, and/or simulation experiments. Experimental methodologies for determination of the parameters have been developed from the fraction cells surviving the proton irradiation curves in tumor and OAR, and precise RBE models are used for calculating the variable of effective dose. As the executions of these methodologies have a high costs, so we have developed computer tools enable to perform simulation experiments as complement to limitations of the real ones.Results:The requirements for the use of the SM in the PT, such as validation and improvement of the elaborated and existent methodologies for determining the SM parameters and effective dose respectively, were determined.Conclusion:The SM realistically simulates the main processes in the PT, and for this reason these can be implemented in this therapy, which are simples, computable and they have other advantages over some current models. It has been determined some negative aspects for some currently used probabilistic models in the RT, like the LKB NTCP and others derived from logistic functions; which can be improved with the proposed methods in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.