Abstract
Advances in deep neural networks have led to impressive results in recent years. The new technologies such as cross-domain adaptation, reinforcement learning and generative adversarial networks have shown a real promise for industrial and real-life applications. In this paper, the results of the experimental research on designing, training and implementation of the preprocessing algorithm for the computer numerical control machine input were presented. The algorithm of neural network transfer of artistic style has demonstrated wide possibilities in the field of generating graphic content. This paper demonstrates the possibility of using a generating neural network for the synthesis of stylized images that can be used as input images for a computer numerical control machine. Thus, the proposed algorithm is pre-processing the input image. The design feature of the laser engraver does not allow styling using an arbitrary style image, so dotted or linearized binary images are used as a style. The proposed preprocessing algorithm allows synthesizing binary images reproduced by a laser engraver. At the same time, image generation is performed in one forward pass of the generating neural network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.