Abstract

To better understand how active deformation localizes within a continental plate in response to extensional and transtensional tectonics, a combined analysis of high‐quality gravity (Bouguer anomaly) and seismicity data is presented consisting of about 35000 earthquakes recorded in the Baikal Rift Zone. This approach allows imaging of deformation patterns from the surface down to the Moho. A comparison is made with heat flow variations in order to assess the importance of lithospheric rheology in the style of extensional deformation. Three different rift sectors can be identified. The southwestern rift sector is characterized by strong gravity and topography contrasts marked by two major crustal faults and diffuse seismicity. Heat flow shows locally elevated values, correlated with recent volcanism and negative seismic P‐velocity anomalies. Based on earthquake fault plane solutions and on previous stress field inversions, it is proposed that strain decoupling may occur in this area in response to wrench‐compressional stress regime imposed by the India–Asia collision. The central sector is characterized by two major seismic belts; the southernmost one corresponds to a single, steeply dipping fault accommodating oblique extension; in the centre of lake Baikal, a second seismic belt is associated with several dip‐slip faults and subcrustal thinning at the rift axis in response to orthogonal extension. The northern rift sector is characterized by a wide, low Bouguer anomaly which corresponds to a broad, high topographic dome and seismic belts and swarms. This topography can be explained by lithospheric buoyancy forces possibly linked to anomalous upper mantle. At a more detailed scale, no clear correlation appears between the surficial fault pattern and the gravity signal. As in other continental rifts, it appears that the lithospheric rheology influences extensional basins morphology. However, in the Baikal rift, the inherited structural fabric combined with stress field variations results in oblique rifting tectonics which seem to control the geometry of southern and northeastern rift basins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.