Abstract
In recent years, deep learning-based approaches for industrial surface defect detection have shown great promise. To address the domain shift issue among data from different sources in the industrial domain, we present a novel plug-and-play Style Adaptation (SA) module, which endows the equipped defect detector with the capability to exhibit robustness to diverse styles present within the samples. This module effectively leverages datasets sourced from diverse origins while possessing congruent data types. In contrast to other domain adaptation approaches lacking well-defined domain delineations, the SA module generates representations characterized by distinct practical implications and precise mathematical formulations. Moreover, incorporating attention mechanisms reduces the need for manual intervention, allowing the module to focus autonomously on crucial branches in it. Experimental results demonstrate the superior efficacy of our approach compared to state-of-the-art techniques. Furthermore, an authentic dataset from various manufacturers is publicly available for deep learning research and industrial applications. Access the dataset at: https://github.com/THU-PMVAI/MTS3D
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.