Abstract

Right heart failure and pulmonary artery remodeling resulting from increased left heart pressure are prevalent in a clinical setting, and the specific pathological feature exhibits cancer-like cell proliferation in lung. STVNa has been previously demonstrated its anti-proliferation property. In this study, we want to verify the therapeutic effect of STVNa against right ventricle hypertrophy and pulmonary artery remodeling in rats induced by transverse aortic constriction (TAC). The results show that TAC surgery increased mean right ventricle pressure (mRVP) less in the STVNa group than that in the vehicle group (11.81 vs 22.71 mmHg/ml, p < 0.01). STVNa treatment reduced the right ventricle cardiomyocyte area (p < 0.05) and the proliferation of pathological smooth muscle cells proving by PCNA immunohistochemical staining. Gene expression of brain natriuretic peptide (BNP), smooth muscle actin (SMA) and CD31 assessed by real-time polymerase chain reaction were confirmed the above results. Also, STVNa treatment decreased the lung fibrosis content and alleviated the inflammation infiltration. The expression of ET-1 and the phosphorylation of signal-regulated kinase (ERK) were lower in STVNa group compared to vehicle group (p < 0.05). In summary, STVNa could relieve right ventricle hypertrophy and pulmonary artery remodeling formation in rats after 9 weeks of TAC surgery by reducing ET-1 expression and suppressing ERK phosphorylation signal and subsequently inhibiting cell proliferation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.