Abstract

To study, for the first time, the effects of stunning on homeometric and heterometric autoregulation. Ischaemia (15 min)/reperfusion (30 min) was induced in the isovolumic blood-perfused dog heart preparation. Heart rate elevations (n = 9) from 60 to 200 beats min-1, in steps of 20 beats min-1, promoted the same inotropic stimulation in control (C) and stunning (S), indicating that ischaemia/reperfusion does not affect the changes in calcium kinetics elicited by the Bowditch effect. Sudden ventricular dilation (VD) (n = 10) evoked an instantaneous increase in developed pressure (Delta1DP) followed by a continuous slow performance increase (Delta2DP) in C and S. Delta1DP (C: 35 +/- 2.2 mmHg; S: 27 +/- 2.1 mmHg; P = 0.002) and Delta2DP (C: 20 +/- 1.6 mmHg; S: 14 +/- 1.3 mmHg; P = 0.002) decreased proportionally, while Delta2/Delta1DP (C: 0.57 +/- 0.13; S: 0.58 +/- 0.14) and slow response time course (T/2) were unchanged (C: 55 +/- 6.6 s; S: 57 +/- 7.7 s) after ischaemia/reperfusion. The reduction of Delta1DP can be understood as a decline of the myofilaments calcium responsiveness, the main pathophysiological effect of stunning. The reason for the weakening of Delta2DP, due to intracellular calcium gain, was not determined but it was supposed that its complete manifestation could be restricted by cyclic adenosine monophosphate (cAMP) myocardial content reduction. As reported by others, Delta2DP depends on myocardial cAMP, and it has been shown that myocardial cAMP is decreased after ischaemia/reperfusion. Contractile depression due to stunning has no effect on the inotropic stimulation generated by the Bowditch phenomenon. Immediate and time-dependent enhancements of contraction evoked by sudden VD are proportionally reduced and the slow response time course is unaffected in the stunned myocardium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.