Abstract

The variability of switching parameters in redox-based resistive switching RAM (ReRAM) devices is investigated by a 3D kinetic Monte Carlo approach. This physics-based model can simulate the filamentary resistive switching in the electroforming, SET and RESET processes and captures their key features. It allows to predict the impact of the forming and switching conditions on the fluctuations of key parameters like the current and resistance levels of the cell in on and off states. The origin of the variability of the switching parameters was investigated in terms of the involved physical processes. The simulations also confirm the multilevel cell operation capabilities of ReRAM devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.