Abstract

The dependence of impurity confinement time on the charge and mass of the impurity ions injected from various samples (LiF, BN, W) by the laser blow-off method is reported for electron cyclotron heated discharges of the TJ-II heliac. Distinct impurity confinements are distinguished clearly for these injected ions in the plasma core as revealed by soft x-ray analysis and by tomographic reconstruction of bolometer array signals. A dependence of impurity confinement with charge seems to be the most probable explanation, as confirmed by the analysis of spectrally resolved data in the vacuum–ultraviolet range. This is discussed in terms of the dependence of impurity neoclassical transport on the background radial electric field. In addition, the impurity confinement of LiF is studied for a set of discharges in which the hydrogenic isotope mixture (H, D) is known (and evolves along the experiment), revealing a moderate isotope effect that is observed for the first time in particle confinement in a stellarator. This effect is consistent with a similar effect reported in global energy confinement time in the ATF stellarator.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call