Abstract

The superconducting machine LHD has conducted long pulse experiments for four years to achieve long-duration plasmas with high performance. The operational regime was largely extended in discharge duration and plasma density. In this paper, the plasma characteristics, in particular, plasma performance and impurity behaviour in long pulse discharges are described. Confinement studies show that global energy confinement times are comparable to those in short pulse discharges. Long sustainment of high performance plasma, which is equivalent to the previous achievement in other devices, was demonstrated. Long pulse discharges enabled us to investigate impurity behaviour in a long timescale. Intrinsic metallic impurity accumulation was observed in a narrow density window (2–3×1019 m−3) only for hydrogen discharges. Impurity transport study by using active impurity pellet injection shows a long impurity confinement time and an inward convection in the impurity accumulation window, which is consistent with the intrinsic impurity behaviour. The pulsed neon gas injection experiment shows that the neon penetration into the plasma core is caused by the inward convection due to radial electric field. Finally, impurity accumulation control with an externally induced magnetic island at the plasma edge was demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call