Abstract
Gas extraction in the pressure-relief area using the depressurization effect of seam mining is an effective way to solve coal-mine gas problems. In this paper, we performed numerical modelling of the 204 working face via FLAC 3D, by which the stress variation of the rock mass and associated permeability evolution during the working face advancement were investigated. Furthermore, the favorable gas extraction zone for pressure relief was proposed based on the gas extraction performance of the on-site boreholes. The results show that: (1) gas extraction varies with the evolution of the three zones of the overlying rock and the associated permeability variation, which becomes stable when the height of the three zones remains unchanged; (2) the favorable zone for gas extraction of the 204 working face ranges from 13 m to 19 m of Dv, in which the gas extraction of on-site boreholes are located, presents better performance than other areas; (3) the gas extraction volume of the optimized gas extraction scheme rises to 77.46 m3/min with a 77.26% gas extraction rate, eliminating gas overrun in the working face and upper corner and increasing the advancement speed to 6.4 m/d. The on-site verification confirms the numerical simulation scope, more accurately determining the favorable zone for gas extraction. This may provide a reliable approach for improving the pressure-relief gas extraction performance and reducing the associated engineering costs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.