Abstract

The significance of actin cytoskeleton on cell growth was historically studied using toxic drugs, such as cytochalasin. However, it is possible that unpredictable effects of these agents may have influenced the reported observations. In our study, we have established a drug-free system using cofilin overexpression to investigate the relationship between actin filaments and cell cycle progression. Cofilin is a member of the actin depolymerization factor (ADF)/cofilin family, cofilin cDNA was cloned to a tetracycline-inducible gene expression vector and stably transfected to human lung cancer H1299 epithelial cells. Destabilization of actin filaments and morphological change was detected in cofilin overexpressing cells by actin analysis and microscopy, respectively. Measurements of growth rates showed that cell proliferation was retarded in cells with overexpressed cofilin. Also, cell cycle analysis showed that approx 90% of cofilin overexpressing cells were arrested in G1 phase, which is consistent with previous reports that drug-mediated disruption of actin filaments can cause G1 phase arrest. Taken together, cofilin overexpression cell model provides evidence that the effects of actin cytoskeletal destabilization on cell cycle progression can be studied using molecular approach instead of drug.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call