Abstract

The development of smart grid technologies has resulted in increased interdependence between power and communication systems. Many of the operations in the existing power system rely on a stable and secured communication system. For electrically weak systems and time-critical applications, this reliance can be even greater, where a small degradation in communication performance can degrade system stability. However, despite inter-dependencies between power and communication systems, only a few studies have investigated the impacts of communication system performance on power system dynamics. This study investigates the dependencies of power system dynamics operations on a communication system performance. First, a detailed, dynamic networked microgrid model is developed in the GridLAB-D simulation environment, along with a representative multi-traffic, multi-channel, multi-protocol communication system model, developed in the network simulator (ns-3). Second, a hierarchical engine for large-scale infrastructure co-simulation framework is developed to co-simulate microgrid dynamics, its communication system, and a microgrid control system. The impact of communication system delays on the dynamic stability of networked microgrids is evaluated for the loss of generation using three use-cases. While the example use-cases examine microgrid applications and the impact to resiliency, the framework can be applied to all levels of power system operations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call