Abstract

Nowadays, the research on a two-wheeled self-balancing robot is an active area of research especially in terms of design as well as control to continue the innovation applications of robots in the future. Most of the two-wheeled self-balancing robots are designed based on an inverted pendulum system for stability and maneuverability. The aim of this paper is to propose the fuzzy PD controller to control and maintain its balance on the two wheels. A sensor of the Inertial Measurement Unit (IMU) was used as an input to evaluate and obtain the position and orientation of the robot. The control algorithms for the robot also are designed to keep the pendulum upright. Then, the fuzzy PD concept was applied to correct the error between the desired set point and the actual tilt angle position to adjust the speed of the motor accordingly. The results obtained from this controller were capable of maintaining the balancing of the robot by using an experimental method of PID tuning. The prototype of the two-wheeled self-balancing robot was implemented with Arduino Uno and a fuzzy PD controller. However, the limitation of the project is the longer size and heavier weight of the robot are less stable, then a better controller is needed to balance the robot.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.