Abstract
Fluid resonance may occur in a narrow gap between two side-by-side vessels under wave actions, which can cause significant wave height amplification inside the gap and further induce large wave loads and motion responses of the vessel. Based on an open-sourced computational fluid dynamics (CFD) package, OpenFOAM, the steady-state gap resonance phenomenon formed in between two side-by-side boxes and triggered by the incident regular waves is simulated, where the upriver box keeps fixed and the downriver one heaves freely under wave actions. This article comprehensively investigates the influence of the vertical degree of freedom of the downriver box on the wave loads exerting on both boxes and further reveals how the relative position of the heaving box with respect to the incident wave direction affects the characteristics of wave loads during the steady-state gap resonance. The results show that both the normalized largest wave loads and the dimensionless wavenumber where the normalized largest wave loads occur are significantly affected by both the incident wave heights and the relative position of the heaving box to the incident wave direction.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have