Abstract

As the temperature decreases, when the freezing temperature is reached, the solution in the pores of saline soil undergoes ice crystallization and salt crystallization phenomena. Theoretical and experimental studies have been carried out in order to investigate the behaviour of water-salt phase transitions within the pores of saline soils. Firstly, the theoretical expression for the initial crystallization radius is given from the thermodynamic theory by considering the interphase chemical potential equilibrium and the Young-Laplace equation, and the relationship between the initial crystallization radius and temperature as well as the initial salt content is analyzed. Then, a theoretical model to predict the pore solution content and crystal content was developed in conjunction with the Van Genuchten soil-water characteristic curve model, and the water-salt phase transition behaviour of saline soils was analyzed by numerical calculations. Finally, the validity of the theoretical model was verified by a saline soil freezing test. The results show that the water-salt phase transition behaviour of the solution within the pores of saline soils is affected by temperature and initial salt content, and the water-salt phase transition behaviour mainly occurs at the early stage of freezing. Salt lowers the freezing temperature of the soil; the higher the salt content, the lower the freezing temperature, and the presence of salt inhibits the growth of ice crystals. As the temperature decreases, the precipitation of ice salt crystals during the phase transition of the soil pore solution reduces the soil porosity and decreases the channels for ion migration, resulting in a gradual increase in the soil pore volume ratio.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call