Abstract

The discharge of wastewater from aquaculture ponds causes a certain degree of damage to the environment. It is necessary to continuously improve the treatment efficiency of wastewater treatment devices. The purpose of this study is to obtain an optimal ratio of wastewater circulation devices in order to obtain the best operating parameters and to reduce the discharge of polluted water. We constructed an experimental wastewater circulation device consisting of three units. The primary unit contained modified attapulgite (Al@TCAP-N), volcanic stone, and activated carbon for precipitation. The secondary and tertiary units used biological methods to enhance removal rates of nitrogen and phosphorus. Water quality indicators of total phosphorus (TP), total nitrogen (TN), ammonia (NH3-N), permanganate (CODMn), and total suspended solids (TSS) were detected. Water quality was tested under different matching ratios for three units of different hydraulic retention time (HRT) and load Results showed that the removal rate of TP, TN, NH3-N, and TSS reached 20–60%, 20%, 30–70%, and 10–80%, respectively. The average reduction efficiencies of secondary module chlorella and filler on TP, TN, NH3-N, CODMn, and TSS were 56.88%, 30.09%, 0.43%, 46.15%, and 53.70%, respectively. The best removal rate can be achieved when the matching ratio of each unit becomes 2:1:1 and the hydraulic retention time is maintained within 2 h in the high-concentration load. Finally, the average removal rates of TP, TN, NH3-N, and TSS reached 58.87%, 15.96%, 33.99%, and 28.89%, respectively. The second unit obtained the enhanced removal effect in this wastewater treatment system when adding microorganisms and activated sludge.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call