Abstract
UV-light emitting diodes (UV-LEDs) was used for the photocatalytic degradation of Rhodamine B (RhB) dye to study the various parameters, effectiveness and feasibility for designing of photocatalytic reactor based on UV-LED irradiation in different conditions. The photocatalytic experiments were conducted using 5 UV-LED lights with same specification and Degussa P-25 TiO 2 as a photocatalyst. The effects of operational parameters such as catalysts loading, initial dye concentration, pH, addition of H 2O 2 and effect of metal ions (Zn 2+, Ag +, Fe 3+, Cu 2+ and Cd 2+) were studied for the photocatalytic degradation of RhB. A detailed degradation pathway has been suggested, which was based on the electrospray ionization mass spectrometry (ESI-MS) analysis. It was observed that the degradation of RhB occurred via N-de-ethylation process. N-de-ethylated product was further oxidized into acids and alcohols. The complete mineralization of RhB dye (2.08 × 10 −5 M) was confirmed by chemical oxygen demand (COD), total organic carbon (TOC), total inorganic carbon (TIC) and high pressure liquid chromatography (HPLC) analysis. The optimum conditions for higher percentage degradation of RhB dye obtained with amount of catalyst (1.6 g/L), dye concentration (6.26 × 10 −5 M) and pH = 3.05. Results demonstrated that the UV-LED/TiO 2 process can effectively degrade RhB dye with optimum conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.