Abstract

Underfill materials are employed in flip-chip assemblies to enhance solder joint reliability performance. We have studied the adhesion strength of two underfill samples with tin/lead (Sn/Pb) eutectic solder and tin/copper (Sn/Cu) lead-free solder, benchmarked with a copper surface. It was found that the adhesion of underfills and both solder materials was about 1/3 of the adhesion between underfills and copper. The effect of temperature and humidity aging as well as flux residue on adhesion strength was also investigated. A loss of adhesion was observed after the pressure cooker test, but 85/spl deg/C/85% RH aging and flux residue revealed only a slight influence on adhesion strength. Surface analysis was performed on solid surfaces including copper, Sn/Pb eutectic solder, Sn/Cu lead-free solder and cured underfills by using the three-liquid-probe three-component surface tension method with a goniometer. The surface tension of liquid underfills was measured by the pendent drop method, and their contact angles on copper, Sn/Pb eutectic solder and Sn/Cu lead-free solder were also measured with a goniometer. The thermodynamic work of adhesion for underfills with copper and solder surfaces of different conditions was then calculated following these two surface analysis approaches. It was found that the thermodynamic work of adhesion was not correlated with the lap shear strength of underfills with copper and solder materials. Thus, the wetting property of an underfill on a substrate is not the determining factor for its practical adhesion strength. Various possible techniques for improving the adhesion of underfills and solder materials were then considered, and the use of additives in underfill formulations was experimented. However, we have not observed any significant effect of adhesion strength enhancement from any of these additives. Further tests of these additives with the base underfill formulation seemed to reveal a slight possibility to enhance adhesion of underfills and solders by proper manipulation of the underfill and/or flux formulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.