Abstract

The traditional reinforcement learning method has the problems of overestimation of value function and partial observability in the field of machine motion planning, especially in the obstacle avoidance problem of UAV, which lead to long training time and difficult convergence in the process of network training. This paper proposes an obstacle avoidance algorithm for UAVs based on a deep recurrent double Q network. By transforming the single-network structure into a dual-network structure, the optimal action selection and action value estimation are decoupled to reduce the overestimation of the value function. The fully connected layer introduces the GRU recurrent neural network module, and uses the GRU to process the time dimension information, enhance the analyzability of the real neural network, and improve the performance of the algorithm in some observable environments. On this basis, combining with the priority experience playback mechanism, the network convergence is accelerated. Finally, the original algorithm and the improved algorithm are tested in the simulation environment. The experimental results show that the algorithm has better performance in terms of training time, obstacle avoidance success rate and robustness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.