Abstract
With the wide application of unmanned ground vehicles (UGV) in a complex environment, the research on the obstacle avoidance system has gradually become an important research part in the field of the UGV system. Aiming at the complex working environment, a sensor detection system mounted on UGV is designed and the kinematic estimation model of UGV is studied. In order to meet the obstacle avoidance requirements of UGVs in a complex environment, a fuzzy neural network obstacle avoidance algorithm based on multi-sensor information fusion is designed in this paper. MATLAB is used to simulate the obstacle avoidance algorithm. By comparing and analyzing the simulation path of UGV's obstacle avoidance motion under the navigation control of fuzzy controller and fuzzy neural network algorithm, the superiority of the proposed fuzzy neural network algorithm was verified. Finally, the superiority and reliability of the obstacle avoidance algorithm are verified through the obstacle avoidance experiment on the UGV experimental platform.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.