Abstract

A hub motor is an effective drive system for Battery Electric Vehicles (BEVs). However, due to limitations on packaging and cost, there are few applications in which hub motors are taken as the only actuators for a brake vehicle. Most applications involve a Regenerative Braking System (RBS) combined with a Hydraulic Braking System (HBS). In this paper, a top hierarchy Advanced Emergency Braking System (AEBS) controller is designed in Matlab/Simulink and State-flow, including functionalities of basic emergency braking, brake force distribution between front and rear wheels, anti-lock braking and coordination between RBS and HBS based on Model Predictive Control (MPC); a Seven Degrees of Freedom (DOF) BEV chassis model is constructed and rear-end crash test scenarios are created in Carsim with a high and low road adhesion coefficient. A series of comparison tests show that not only are the stopping distances between the ego vehicle and target vehicle shorter, but also the braking torques, longitudinal slip ratio and rotation speed of each wheel are well controlled without wheel locking. To sum up, in addition to meeting the AEBS requirements of avoiding a rear-end collision, the control strategy developed in this paper also levels up braking performance and enhances vehicle stability on both high-mu and low-mu roads for BEVs driven by a hub motor independently.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call