Abstract

This study analyzes the throttling pressure control flow field, and the influencing factors of its traction speed regulation and braking mechanism are determined. Throttling pressure control flow field characteristics of the traction speed regulation and braking mechanism are analyzed and the principle experiment of the throttling pressure control flow field is also carried out. The results show that the throttling pressure control flow field of the traction speed regulation and braking mechanism of the pipeline intelligent plugging robot is greatly affected by the structure and shape of the speed control valve. When the opening of the speed control valve decreases, the flow rate of the backward jet increases, and the flow rate is faster. This is convenient for scouring the front pipe wall of the device. Conversely, as the opening of the speed control valve increases, the maximum deceleration effect can be achieved by increasing the pressure difference before and after the device. This study provides a theoretical basis for the structure design and selection of the pipeline intelligent plugging robot. Moreover, it is helpful for providing data reference and theoretical guidance for the design of passive fluid-propulsion robots in pipes equipped with bypass rotary valves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call