Abstract

The present work deals with the study on thermal and evaporative resistance of multilayered fabric ensembles meant for cold weather applications. Three-layered structure is used to study the thermal comfort properties. Knitted fabric and polytetrafluoroethylene coated fabrics were used in inner and outer layer, respectively. Needle punched fabrics produced from polyester fibre were used in middle layer. Fifteen different non-woven fabrics were produced according to Box and Behnken experimental design for three variables and three levels by varying mass per unit area, punch density and depth of needle penetration. The produced fabrics were evaluated for thermal and evaporative resistances with and without inner and outer layer fabrics. Thickness, air permeability, bulk density and porosity of the needle punched fabrics were studied. The properties of the fabrics were analyzed for statistical significance by using ‘Design-Expert’ statistical software. Artificial neural network model was developed to predict the properties of fabrics and validation of model was done with the testing data-set. The performance of prediction was evaluated by mean square error, mean absolute error percentage and correlation coefficient. It was concluded that the predicted properties of fabric correlated well with the experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call