Abstract
Propellant refueling is important for long-term operation of the optical module in orbit. However, its thermal environment is harsher than on previous missions. Therefore, thermal control of the entire process is required. In order to solve the complex heat transfer of propellant refueling process, an integrated thermal model is established, which includes all the equipment such as the compressor, liquid cooler and loop heat pipe. The thermal analysis simulation and system-level thermal tests is presented. Firstly, the heat transfer relationship and temperature variation are analyzed by comparing the results of transient thermal analysis and thermal test in high and low temperature conditions. Then, a variable thermal conductivity simulation method is studied for the transient process from inoperative to operative of the vertical heat pipe due to gravitational factors in the thermal test. Finally, an optimized design scheme for high temperature refueling is proposed and pre-demonstrated in orbit. The results indicate that the transient simulation results are in a good agreement with the test results under the high and low temperatures, which verifies the accuracy and validity of the analysis method and simulation model. When preheating the compressor and starting two sets of loop heat pipes during on-orbit refueling, the maximum temperature of compressor is below 34.1°C, and the total power consumption of preheating is 50 Wh, which meet the design requirement. The investigation provides an important reference for designing the propellant refueling process in the docking of the optical module to the China Space Station (CSS).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.