Abstract

Difficulty in water injection during the water injection development (water injection production refers to the injection of water into the reservoir from injection wells during the development process of an oil field; due to its good economic efficiency and high feasibility, it has become the main method of oil field development) process of the G block reservoir is an important problem to solve. Three cores of the G block are used as the object of this study, and the laser particle size test is conducted on the target core to obtain the particle size distribution of the core. X-ray diffraction mineral content analysis is used to obtain the proportion of different mineral contents. On this basis, online nuclear magnetic technology is used to carry out the research on the change of reservoir physical properties during the high-magnification water injection process. The experiment shows that three cores (cores 8-2, 16-1, and 9) are identified as medium sandy fine sandstone with silt (the three-level naming method was adopted and the name has been changed to medium sandy fine sandstone containing silt, because the proportion of fine sand is greater than 50%, the content of medium sand is between 25%~50%, and the content of silt is between 10%~25%), medium sandy fin sandstone containing silt, and silt fine sandstone, by laser particle size testing. Their clay mineral contents are 2.47%, 2.51%, and 4.76%, respectively; the permeability (water) of the three cores continues to decrease with the increase in water injection, but the nuclear magnetic porosity and the signal intensity of different fluids in the nuclear magnetic T2 and nuclear magnetic two-dimensional spectrum show different variation patterns with the increase in water injection. The clay minerals of core 8-2 and core 16-1 are relatively small. The nuclear magnetic porosity increases rapidly to the maximum value and then decreases slowly with the increase in water injection. The right peak signal intensity in the T2 spectrum rises first and then drops, while the clay mineral content of core 9 is relatively high. The change trend of nuclear magnetic porosity is firstly decreasing and then increasing, and the signal intensity of the right peak in the T2 spectrum decreases first and then increases. The research concludes that in the early stage of water injection, clay minerals undergo hydration and a small amount of particle migration; in the later stage of water injection, due to the scouring effect of water, the fine silt and clay minerals in the cement easily fall off and migrate to the pore throat to the block. Some damage to the pore throat leads to a decrease in permeability, thus affecting the development effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call