Abstract
Maintaining proper blood flow is critical to promoting good health. Nattokinase is a serine protease from Bacillus subtilis that has significant in vitro thrombolytic activity, but its mechanism as a dietary supplement to prevent thrombosis through intestinal absorption and transport is still unclear. The purpose of this study is to study the transport and internalisation mechanism of NK in the small intestine using animal models and Caco-2 cell monolayer models. This study first evaluated the preventive effect of supplementing low dose (4000 FU (Fibrin Unit)/kg, n = 6), medium dose (8000 FU/kg, n = 6), and high dose (12000 FU/kg, n = 6) of nattokinase on carrageenan induced thrombosis in mice. Subsequently, we used the rat gut sac model, ligated intestinal loop model, and Caco-2 cell uptake model to study the intestinal transport mechanism of NK. Results indicate that NK is a moderately absorbed biomolecule whose transport through enterocytes is energy- and time-dependent. Chlorpromazine, nystatin and EIPA all inhibited the endocytosis of NK to varying degrees, indicating that the endocytosis of NK in Caco-2 cells involves macropinocytosis, clathrin-mediated and caveolae-mediated pathway. These findings offer a theoretical basis for investigating the mechanism of oral NK supplementation in greater depth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.