Abstract

AbstractThe clarification of freezing in a soil‐water system is critical for assessing the formation of a freezing zone and liquid water flow. The supercooling phenomenon of soil pore solutions has been found during the freezing process, but the mechanism remains poorly understood. In this study, we propose a free energy function of soil‐water systems based on the Classical Nucleation Theory. The analytical solution of the critical nucleation problem of saline soil‐water system is obtained by combining the initial freezing temperature model and Pitzer activity coefficients model in electrolyte solutions. Then, the freezing‐thawing experiments of saline soil with various salt contents were conducted for verifying the analytical solution. The derived boundary nucleation rate is the quantitative solution of the critical condition for the supercooling. The findings suggested that the theory results agreed well with the experiment results. For the salt‐free soil‐water system, the critical maximum radius of supercooling was 7.15 nm. We compared eight classical ice‐water interfacial tension models, and the “Reinhardt & Doye” and “DeMott & Rogers” models showed excellent performance when using the new free energy theoretical framework to predict the crystallization nucleation rate of soil‐water systems. A positive correlation between the boundary nucleation rate and soil‐water potential is detected. According to the influencing factors, the boundary nucleation rate of soil‐water system can be divided into three zones: salt nature control zone (R > 100 μm), salt‐pore mixed control zone (100 μm > R > 100 nm), and pore size control zone (R < 100 nm).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call