Abstract

The current investigation focuses on the stability of the magnesium oxide-based cementitious system under the action of sulfate attack and the dry-wet cycle. The phase change in the magnesium oxide-based cementitious system was quantitatively analyzed by X-ray diffraction, combined with thermogravimetry/derivative thermogravimetry and scanning electron microscope, to explore its erosion behavior under an erosion environment. The results revealed that, in the fully reactive magnesium oxide-based cementitious system under the environment of high concentration sulfate erosion, there was only magnesium silicate hydrate gel formation and no other phase; however, the reaction process of the incomplete magnesium oxide-based cementitious system was delayed, but not inhibited, by the environment of high-concentration sulfate, and it tended to turn completely into a magnesium silicate hydrate gel. The magnesium silicate hydrate sample outperformed the cement sample, in terms of stability in a high-concentration sulfate erosion environment, but it tended to degrade considerably more rapidly, and to a greater extent, than Portland cement, in both dry and wet sulfate cycle environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call