Abstract

Understanding variations in the temporal and spatial distribution of vegetation phenology is essential for adapting to and mitigating future climate change and urbanization. However, there have been limited vegetation phenology studies within small-scale areas such as urban environments over the past decades. Therefore, the present study focuses on Jinan city, Shandong Province, China as the study area and employs a more refined local climate zone (LCZ) approach to investigate spatial and temporal variations in vegetation phenology. The three phenological indicators used in this study from 2007 to 2018, namely, the start of growing season (SOS), the end of growing season (EOS), and the length of growing season (LOS), were provided by MODIS satellite data. The SOS, EOS, and LOS were superimposed on the LCZ and urban–rural gradient to analyze the changes in vegetation phenology, and the applicability of these two analysis methods in the study of urban vegetation phenology was compared by the honest significant difference test. We found that the SOS, EOS, and LOS of vegetation in the study area generally showed an advance, delay, and extension trend, respectively. The means of the SOS and EOS along different LCZ types varied noticeably more than those along urban–rural gradients. In 2016, 77.5%, 80.0%, and 75.8% of LCZ pairs indicated statistically significant differences for SOS, EOS, and LOS, respectively. This study provides a new perspective for the study of urban vegetation phenology which can help in management of urban-scale environments, identification of areas rich in biodiversity, and conservation and restoration of biodiversity in urban areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call