Abstract
As a common malignant tumor disease, hepatocellular carcinoma is the most common cancers in the world. The incidence of hepatocellular carcinoma in China is higher than that in the world. Therefore, it is very important for doctors to separate liver and tumor from CT images by means of computer-aided diagnosis and treatment. In this paper, a multiscale DC-CUNets network liver tumor segmentation method is proposed to enhance the fusion of multi-phase image features in CT, the scale of liver tumors, and the optimization of network training process. (1) A multistage CT liver tumor segmentation method based on two-channel cascaded U-Nets (DC-CUNets) is proposed. The liver was segmented using the first-order U-Net, and then the segmented area of interest of the liver was input into the second-order U-Net network to segment liver tumors. We designed two-channel U-Nets to learn the image characteristics of CT images in arterial and venous phases respectively, and to achieve two-channel feature fusion through feature cascade to improve the overall accuracy of liver tumor segmentation.(2) A multistage CT liver tumor segmentation method based on multiscale DC-CUNets was proposed. For the scale problem of liver tumors, we designed a two-layer multiscale void convolution module to obtain image features at different scales for large, medium and small tumors, and fuse the multiscale features at the output of the module. We have replaced the convolution layer of the fourth module in the second-order two-channel liver tumor segmentation U-Nets by the two-layer multiscale cavity convolution module to implement multiscale DC-CUNets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.