Abstract

Background: Renal ischemia reperfusion injury (RIRI) is the main cause of acute kidney injury (AKI). The aim of this study was to investigate whether sevoflurane could protect HK-2 cells treated by H2O2 by improving apoptosis and oxidative stress through TLR4/MyD88/NF-κb signaling pathway. Methods: HK-2 cells was treated with H2O2 to construct the oxidative damage model happened in renal ischemia reperfusion injury (RIRI). CCK-8 assay was performed to analyze the viability of HK-2 cells. The reactive oxygen species (ROS), lactate dehydrogenase (LDH), superoxide dismutase (SOD) and malondialdelyde (MDA) testing kits were used for the detection of oxidative stress related factors. TUNEL assay and Western blot were applied to analyze the apoptosis of HK-2 cells. And, proteins of TLR4/MyD88/NF-κb signaling pathway were also detected by western blot. Results: The viability of H2O2-induced HK-2 cells was decreased compared with the control group. The ROS, SOD and MDA levels were increased and LDH level was decreased in H2O2-induced HK-2 cells. The apoptosis of H2O2-induced HK-2 cells was increased. The expression of Bax was decreased and the expression of Bcl-2 and cleaved caspase 3 were increased in the H2O2-induced HK-2 cells. The expression of TLR4/MyD88/NF-κb signaling pathway was increased in the H2O2-induced HK-2 cells. All these changes were reversed by pretreatment with sevoflurane to some extent in HK-2 cells. Conclusion: In conclusion, sevoflurane pretreatment protects HK-2 cells treated by H2O2 by improving apoptosis and oxidative stress through inhibiting the TLR4/MyD88/NF-κb signaling pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call