Abstract
New single phase and adjustable emission phosphors have attracted a lot of attention because of the good luminous properties. In this work, Sm3+ doped CaTbAl3O7 phosphors are prepared in air by solid-state method. The crystal structure, concentration dependent spectra, lifetimes, and luminescence properties are investigated. Because of the 4f8 → 4f75d1 and 4f → 4f transitions of Tb3+ ion, host (CaTbAl3O7) shows an excitation spectrum in the range of 220–520 nm under monitored at 544 nm and emits yellow-green light under excitation 248, 284, and 368 nm due to the 5D4 → 7FJ (J = 0, 1, 2, 3, 4, 5, and 6) transitions of Tb3+ ion. CaTbAl3O7:Sm3+ under monitored 598 nm contains the excitation spectral peaks of both CaTbAl3O7 and Sm3+ ion. With excitation at 368 nm, CaTbAl3O7:Sm3+ glows orange-red light, its PL spectrum has both host (CaTbAl3O7) and Sm3+ ion contributing, and the chromaticity coordinates are about (0.5499, 0.4351). Under excitation 402 nm, the red-orange emission of CaTbAl3O7:Sm3+ is only the contribution of Sm3+ ion and the chromaticity coordinates are about (0.5823, 0.4168). The energy transfer process from Tb3+ in host (CaTbAl3O7) to Sm3+ ions can be confirmed via the spectral properties. We explain the luminous mechanism of CaTbAl3O7:Sm3+ by the energy level diagrams of Tb3+ and Sm3+.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.