Abstract

Ultra-high reflectors, working as a critical optical component, has been widely applied as a cavity mirror in fine optical systems such as laser gyro, F-P interferometer, etc. For decades, ion beam sputtering (IBS) technology, which can deposit ultra-low loss and dense layers, has been commonly believed to be the only and irreplaceable method to fabricate ultra-high reflectors. Thus, reports on other methods are rare and a reflectivity above 99.99% obtained by evaporation technology (including ion assisted evaporation) has not been seen yet. In the present study, an energetic radio frequency (RF) ion source was introduced during the electron beam evaporation process, which improved the layer quality dramatically. An ultra-high reflector at 1319 nm with reflectivity of 99.992% (measured by cavity-ring down method) was successfully deposited on a φ100 mm × 25 mm single crystal silicon substrate whose surface roughness was approximately 0.420 nm. The surface figure of the reflector was accurately controlled superior to 1/6λ (λ = 632.8 nm). The measured absorption was approximately 3–5 ppm and the calculated scatter based on surface roughness measurement was approximately 6.64 ppm. Total loss of the reflector was systematically discussed. This study showed that it is possible to apply electron beam evaporation in ultra-high reflector manufacture and the method is capable of depositing reflectors with an aperture larger than φ600 mm which is the maximum capacity of current IBS technology.

Highlights

  • Ultra-high reflector, as a critical component, has been widely applied as a cavity mirror in fine optical systems

  • Driven by strong demands for ultra-high reflectors for cutting-edge optical technology—such as laser interferometer gravitational-wave observatory (LIGO), ring laser gyro (RLG), high-precision laser resonator [3,4,5,6], etc.—a lot of research has been carried out on ion beam sputtering (IBS) technology ranging from device improvement to deposition process

  • It can be seen that surface roughness decreased from

Read more

Summary

Introduction

Ultra-high reflector, as a critical component, has been widely applied as a cavity mirror in fine optical systems. To meet the demand of laser gyro industry, ion beam sputtering (IBS) was initially developed to fabricate small (

Methods
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.