Abstract

In this paper, molecularly imprinted Zr-doped TiO2 photocatalysts (MIP-ZrO2-TiO2) were prepared by the molecularly imprinted sol-gel method for the photocatalytic degradation study of hydroquinone (HQ) as the target pollutant. For the effectiveness of the MIP-ZrO2-TiO2 catalyst in degrading HQ, the effects of Zr doping ratio, imprinted molecule dosage, calcination conditions, and pollutant concentration on its photocatalytic activity were investigated. XRD, TEM, XPS, and other techniques were used to evaluate the materials, and the findings revealed that MIP-ZrO2-TiO2 films with imprinted HQ were successfully produced on the ZrO2-TiO2 surface. The optimal preparation conditions were n(Ti):n(Zr) = 100:8, m(HQ) = 1.5g, 550°C for the calcination temperature, and 2h for the calcination duration. The optimum reaction conditions were 10mg/L HQ concentration, 1g/L catalyst dose, and a pH of 6.91. According to the findings of photocatalytic tests, during 30min of UV lamp (365nm) irradiation, the degradation rates of MIP-ZrO2-TiO2, ZrO2-TiO2, and TiO2 for HQ were 90.58%, 83.94%, and 58.30%, respectively. The findings revealed that the doping of Zr metal and the addition of imprinted molecules improved the photocatalytic activity of TiO2, which can be used for the efficient treatment of low concentrations of hard-to-degrade hydroquinone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call