Abstract
Abstract When cylindrical tanks installed in the ground, such as oil tanks and liquid storage tanks, receive strong seismic waves, including the long-period component, motion of the free liquid surface inside the tank called sloshing may occur. If high-amplitude sloshing occurs and the waves collide with the tank roof, it may lead to accidents such as damage of the tank roof or outflow of internal liquid of the Tank. Therefore, it is important to predict the wave height of sloshing generated by earthquake motions. Sloshing is a type of vibration of free liquid surface, and if the sloshing wave height is small, it can be approximated with a linear vibration model. In this case, the velocity-response-spectrum method using velocity potential can estimate the sloshing wave height under earthquake motions. However, if the sloshing wave height increases, the sloshing becomes nonlinear, and necessary to evaluate the wave height using other methods such as numerical analysis. Design earthquake magnitude levels in Japan tend to increase in recent years, long-period components of earthquake wave which act on the sloshing wave height also increase instead of introducing seismic isolation mechanisms. To evaluate load acting on the internal components of cylindrical tanks by nonlinear sloshing, there are few applications which quantitatively evaluated the crest impact load of nonlinear sloshing. In order to evaluate the load acting on the internal components of cylindrical tanks, the range of applicability of the fluid flow analysis method which validated the analysis accuracy of impact load acting on the roof in a simple cylindrical tank in the past study (PVP2019-93442) is extended to cylindrical tanks with internal components.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have