Abstract
In the random sea environment, offshore platforms are influenced by factors such as wind, waves, and currents, as well as their interactions, leading to complex motion phenomena that affect the safety of offshore platform operations. Consequently, accurately predicting the motion response of offshore platforms has long been a key focus in the fields of naval architecture and ocean engineering. This paper utilizes STAR-CCM+ to simulate time-history data of offshore platform motion responses under both regular and irregular waves. Furthermore, a predictive model combining residual convolutional neural networks and long short-term memory neural networks using neural network technology is also studied. This model utilizes an autoregressive approach to predict the motion responses of offshore platforms, with its predictive accuracy validated through comprehensive evaluations. Under regular wave conditions, the coefficient of determination (R2) for the platform’s heave and pitch responses consistently exceeds 0.99. Meanwhile, under irregular wave conditions, the R2 values remain generally above 0.4. Additionally, the model exhibits commendable performance in terms of Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE) metrics. The aim of this study is to present a novel approach to predicting offshore platform motion responses, while providing a more scientific basis for decision-making in offshore platform operations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.