Abstract

Emission control of methane from landfills has received considerable attentions in recent years. Photo-electro-catalytic oxidation of methane was carried out at the mode of continuous electrolysis and intermittent illumination with TiO2-coated titanium mesh plate as pholocatalyst and electrode in combination with ionic liquid as electrolyte under UV light irradiation. The result showed that the rapid conversion of methane was achieved under ambient pressure and temperature through photocatalytic oxidation combining with electrolysis. Under the mode of intermittent illumination (on:off = 10 min : 10 min) and continuous electrolysis (II-CE), the highest oxidation rate of methane (280 mg/(m3min)) was obtained. Under fixed off time and total illumination time, the oxidation quantity of methane linearly increased with the intermittent frequency. Photo-electro-catalytic oxidation of methane can be described by the first-order kinetics, and the apparent kinetic constant increased with the intermittent frequency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.