Abstract

Measurements of methane oxidation rates were made in southeastern Bering Sea water samples with [C]methane. The rate at which CO(2) evolved from samples exposed to one methane concentration was defined as the relative methane oxidation rate. Rate determinations at three methane concentrations were used to estimate methane oxidation kinetics. The rate constant calculated from the kinetics and the observed methane concentration in the same water sample were used to calculate an in situ methane oxidation rate and the turnover time. First-order kinetics were observed in essentially all experiments in which methane oxidation kinetics were measured. Relative methane oxidation rates were greater in waters collected at inshore stations than at the offshore stations and were greater in bottom samples than in surface samples. In most water samples analyzed, there was essentially no radioactivity associated with the cells. The resulting respiration percentages were therefore very high with a mean of >98%. These data suggest that most of the methane was used by the microflora as an energy source and that very little of it was used in biosynthesis. The relative methane oxidation rates were not closely correlated with methane concentrations and did not appear to be linked to either oxygen or dissolved inorganic nitrogen concentrations. However, there was a significant correlation with relative microbial activity. Our data suggest that the methane oxidizers were associated with the general microbial heterotrophic community. Since these organisms did not appear to be using methane as a carbon source, it is unlikely that they have been isolated and identified as methane oxidizers in the past.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call